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Effect of frictional forces on the 
behaviour of dislocation loops 
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Maryland, College Park, Maryland, USA 

A detailed analysis of the effect of frictional forces on the stability of dislocation loops 
lying in their glide planes and the effect of these forces on the cross-slip behaviour of 
these loops under both applied stresses as well as internal stresses arising from other dis- 
location loops, has been made. In addition, the passing as well as cross-slip behaviour of 
non-coaxial dislocation loops has been analyzed and it is shown that these loops could 
give rise to Frank-Read sources by way of cross-slip; and the conditions for generations 
of such Frank-Read sources have been determined. The results show that depending 
upon strain, the cross-slip of dislocation loops could lead to regeneration of dislocation 
and subsequent work-hardening, or to dynamic recovery or stage I II deformation. The 
significance of the above results in relation to the behaviour of dislocation loops observed 
in real crystals is discussed in detail. 

1. Introduction 
It has been previously shown [1] that frictional 
forces are of  great importance in stabilizing many 
dislocation configurations which are otherwise un- 
stable. Such configurations include, for example, 
two or more like dislocations on the same slip 
plane or two or more dislocation dipoles on parallel 
slip planes, etc. Since there are only repulsive 
forces between the dislocations in these configur- 
ations, they tend to separate to infinity if there are 
no frictional forces present. The importance of 
frictional forces was also demonstrated for passing 
coaxial dislocation loops [2].  In particular, it was 
shown that frictional forces lock the expanding 
loop in preference to the contracting one, whereas 
the absence of  such forces would cause both loops 
to collapse simultaneously, even in the presence of 
an applied stress, in order to lower the self energy 
of  the loops. Due to their irreversible nature, 
frictional forces also induce a strain history de- 
pendence [1] with respect to the equilibrium con- 
figurations of  various dislocation arrays, thus in- 
fluencing the dislocation substructure and hence 
the mechanical properties of  many crystals. 

In the following sections, we shall further ex- 
amine the effect of  frictional forces on the stability 
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of  dislocation loops. It has been shown, recently 
[3] that unextended dislocation loops could spon- 
taneously cross-slip or double cross-slip in the 
presence of  an applied stress. If  there are no 
frictional forces present, these cross-slipped loops 
could expand continuously in their cross-slipped 
configuration without giving rise to Frank-Read 
sources [4]. On the other hand, it would be 
possible for dislocation loops to generate Frank-  
Read sources, if frictional forces were present, 
which could selectively lock some of the segments 
of  the loops while the others can still move under 
the applied stress. The conditions for the loops to 
become Frank-Read sources by way of  cross-slip 
or double cross-slip [5] will be examined and will 
be discussed in the light of many experimental 
results [6-9] which seem to give credence to the 
thesis [6] that cross-slip of  dislocation loops is a 
prerequisite for them to act as Frank-Read sources. 

2. Stability of a single dislocation loop 
In the absence of  frictional forces, a dislocation 
loop in an otherwise perfect crystal becomes un- 
stable. Under a constant applied stress, the loop 
either collapses, if its size is less than some critical 
size, or else it expands to infinity, if its size is 
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greater than some critical size. Because of the 
differences in self energies of screw and edge dis- 
locations, the dislocation loop, in general, is of 
elliptical shape [10] with the ratio of the major to 
minor axis of the ellipse of the order of 1/(1 - u ) ,  
where z, is Possion's ratio. Without any loss of 
generality, the analysis of these loops is simplified 
here by approximating them in terms of piecewise 
segments [11]. In particular, an elliptical loop is 
approximated by a rectangular loop, with R1 and 
R2 defining the size of the loop (Fig. la). For a 
given applied stress, the critical size of such a loop 
corresponds to a saddle point [3] in the total 
energy surface, with the energy maximum with 
respect to R2 and minimum with respect to R 1. 

The dashed line in Fig. 2 corresponds to the 
variation of the critical size of the loop with 
applied stress. While the figure shows only the 
variation of R1 with stress, R2 also varies pro- 
portionately with R 1 and a detailed discussion of 
the equilibrium configuration of the loops with 
stress is presented elsewhere [3]. Of interest at 
present, however, is the effect of frictional force 
on the equilibrium size of the loop. The change in 
the total energy of a loop as it moves from some 
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Figure 1 Schematic illustration showing a dislocation 
loop (a) before cross-slip, (b) during cross-slip, (c) cross- 
slipped loop acting as a Frank-Read source for disloca- 
tions on the cross-slip plane. 

reference configuration, R, is given by 

z~E T = (Es- -E~)- - 'c~b(A--A R) 

+ Irfb(A - A R ) I  (1) 

Where Es is the self energy of the loop, % the 
applied stress, Tf the frictional stress, b the Burgers 
vector, and A the area of the loop. The super- 
script R denotes the reference configuration. The 
absolute value in the above expression takes into 
consideration the irreversibility of frictional forces, 
which makes them always positive. For a loop 
continuously expanding from zero radius, the 
above expression reduces to 

ET = ES -- 0-a -- rf)bA (2a) 

which indicates that the equilibrium size of an 
expanding loop can be easily obtained by trans- 
lating the dashed curve in Fig. 2 to the right by 
rf units. Likewise, if the loop is continuously 
contracting from some large radius R, then the 
change in the total energy of the loop is given by 

AET = AE s + (% + "cf)b(A It - -A)  (2b) 

implying that the equilibrium size of such a con- 
tracting loop can be obtained by translating the 
dashed curve in Fig. 2 to the left by ~-f units. To 
be more specific, the two solid lines in Fig. 2 
represent the two limiting equilibrium configur- 
ations of a dislocation loop depending upon the 
direction of motion of the loop. These limiting 
equilibrium configurations are somewhat similar 
to those discussed earlier for infinite dislocation 
fines [1]. Furthermore, while the two solid curves 
describe the unstable equilibrium configurations of 
the loops (saddle point equilibrium), the region in 
between these two curves represents the stable 
equilibrium configurations, i.e. with energy mini- 
mum in terms of both variables, R1 and R2. Such 
equilibrium configurations were termed friction 
induced stable equilibrium configurations [1]. 
Clearly, the range of stability of the loops depends 
on the magnitude of the frictional stress; and it 
approaches zero as the frictional stress goes to zero 
In terms of the line tension of the loop, the 
stability of the loops can be represented by the 
following inequality for an applied stress: 

r L -- 7"f ~< fa ~< TL + Tf (3) 

where the eqgality signs correspond to the points 
on the two solid curves in Fig. 2 and thus refer to 
unstable equilibrium. Physically, this means that if 
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Figure 2 Equilibrium configurations of a single dislocation 

the applied stress is less than rL -- r,, then the line 
tension of the loop, rL, is greater than the total 
opposing forces due to the applied stress and 
frictional stress hence the loop collapses. On the 
other hand, if the applied stress is greater than rr, 
+ rf the loop expands to infinity. In between the 
two limits, the total force on the loop is neither 
sufficie--nt-tb expand the loop nor sufficient to 
collapse the loop and hence the loop becomes 
stable in this range. 

3. Cross-slip of dislocation loops 
Fig. lb represents the piecewise approximation of 
a dislocation loop during its asymmetric cross-slip. 
The stresses acting on the loop are denoted by 
rap and rfp, and 7-ae and r~e, where the first two 
stresses are the applied and frictional stresses on 
the primary plane while the last two are the 
corresponding stresses on the cross-slip plane. The 
change in the total energy of the loop as it cross- 
slips from some reference configuration (Fig. la) 
is given by 

A E  T = A E  s -  rapb(A --A n) + Irfpb(A - -AR)I  

- -  ( 7 a e  - -  T f e ) b X x R  1 . ( 4 )  

The expression for the self energy of the loop in 
the piecewise approximation is given by 

AE s = 2(E~c + E~c + E ~ c - - E ~  - -E~)  + 2E~c = 

+ 2U~c ~ +u~c  ~ + (E~c ~ - u l - ' )  

"1- ( E ~ c  6 - - U ~ -  4 )  ( S )  

I I I I 
I 0 0  2 0 0  3 0 0  4 0 0  5 0 0  

STRESS (108 dynes  cn] 2 ) 

loop in the presence of frictional forces. 

where E~c is the self energy of segment i and 
E~j is the interaction energy between segments 
i and f. The additional subscript C corresponds to 
the corresponding energies in the cross-slip con- 
figuration (Fig. lb). All of the above energies are 
obtained by using the expressions developed by 
Jossang and his co-workers [12, 13]. If the applied 
stress on the primary plane falls in between the 
solid curves in Fig. 2, the loop on the primary 
plane is stable with respect to expansion or con- 
traction on the primary plane. It is however, free 
to cross-slip if the applied stress on the cross-slip 
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Figure 3 Change in the total energy of a cross-slipping 
dislocation loop as a function of its cross-slip distance in 
the presence of frictional forces. 
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plane is greater than the frictional stress on that 
plane. Typical results for an initial loop size of 
R 1 = 1 6 3 x  10 -8cm and R2 = 9 3 x  10 -Scm as 
well as rap = 150 x 108 dyn cm -z and rfp = 100 x 
108 dyn cm -2 are presented in Fig. 3. This figure 
shows that for an applied stress less than or equal 
to the frictional stress, no significant cross-slip of 
the loops occur* and the cross-slip energy mono- 
tonically increases with cross-slip distance. For the 
stresses greater than the frictional stress, say when 
rae - - r re  = 125 X 108dyncm -2, the loop spon- 
taneously cross-slips to a distance X~ corresponding 
to the minimum in the AE T --X1 curve in Fig. 3. 
During this cross-slip processes, the size of the 
loop on the primary plane remains unchanged due 
to the presence of frictional forces on that plane. 
The equilibrium configuration of the cross-slipped 
loop (X~' = 17.5 x 10 -8 cm), however, is not sig- 
nificantly different from that obtained [3] for 
rac = 125 x 108 dyn cm -2 when there are no fric- 
tional forces present on either plane. On the other 
hand, for a larger stress, say for Tac - - 7 f e  = 150 X 
108 dyn cm -2 , there is no energy minimum in 
Fig. 3, and instead, the energy continuously de- 
creases with X~. Two possibilities arise here. The 
loop on the cross-slip plane can expand indefinitely 
without the corresponding expansion of the loop 
on the primary plane. Such an expansion would 
give rise to Frank-Read source for dislocations on 
the cross-slip plane such as shown in Fig. ic. 
Otherwise, the cross-slipped loop could force the 
primary loop to expand along with it due to its 
line tension and the results in that case would 
converge to those obtained earlier when there were 
no frictional forces present. In order for the cross- 
slipped loop to act as a Frank-Read generator, the 
frictional forces on the primary plane should be of 
sufficient magnitude to overcome the line tension 
discussed above. 

The following procedure is adopted for the 
determination of the approximate value of the 
frictional stress. The loop on the cross-slip plane 
is defined by X~ and Re ,  where Rc  is the length 
of the screw segment of the cross-slipped loop 
(Fig. lb) which could be different from R1 if the 
loop on the cross-slip plane expands independently 
of the loop on the primary plane. For the cases 
where R c differs from R~, an additional energy 

term 2(E~c 3 +E~d 6) should be added to the self 
energy expression in equation 5 and simultaneously 
the last term in Equation 4 alters to --(Zae -- ~-fe) b 
{X1R1 + ( R e - - R 1 ) X 1 } .  The contribution from 
the above interaction energy terms vanishes when 
Rc  =R1  since the interaction energy between 
pure screw and pure edge dislocation segments is 
zero. It is found that for frictional stresses, rep, 
greater than or equal to the line tension of the 

initial loop, rL (Fig. 2), R1 and R2 remain at the 
stable equilibrium (with energy minimum) for all 
values of R c and X1. Hence the frictional stress of 
this magnitude is sufficient to overcome any line 
tension on the primary plane due to expanding 
loop on the cross-slip plane. For a frictional stresses 
less than the line tension of the initial loop,Re and 

R1 remain equal until X1 attains the order of R2 
(for X1 = R2 the loop is symmetrically distributed 
in both planes), and Rc  and R1 both increase 
indefinitely for any further increase of X1 beyond 
the symmetry configuration. Hence for these fric- 
tional stresses, the behaviour of the loop is similar 
to that reported earlier [3] for zero frictional 
stress. Also, it is found that when the loop on the 
primary plane remains stable in the presence of 
frictional forces, spontaneous double cross-slip of 
the loop, such as was reported earlier [3], does not 
occur. This is again due to the fact that the applied 
stress on that plane is less than the opposing forces 
of the frictional stress and the line tension of the 
loop. 

4. Non-coaxial dislocation loops 
We shall next turn our attention to the behaviour 
of non-coaxial dislocation loops which pass one 
another on parallel slip planes in the presence of 
frictional forces. The behaviour of coaxial dis- 
location loops in the presence of frictional forces 
has already been treated earlier [2]. Since the 
dislocation loops in a real crystal nucleate at 
various points inside the crystal and expand until 
they meet one another, the analysis of the be- 
haviour of such non-coaxial dislocation loops is of 
particular interest in relation to the work-hardening 
behaviour of metals and alloys. 

4.1. Passing behaviour 
It was reported earlier [14] that in the absence of 

*The screw segments of a dislocation loop could cross-slip by thermal activation even when the applied stresses are 

less than the fr ict ional  stresses. The analysis of this thermally activated cross-slip, however, is beyond the scope  of the 
present analysis. 

2085 



Z I / '  x 
I / / /  ) 

IV/'// / Ill/// /I [,% //6 //9 
.. i/"'~, i 

(o) 7 " ~ / /  (b) I0 "~.../ 

i/ [I 

(r I 5".,./ /I , ~ /  / / /  
(d) / - -  " ~ /  

Figure 4 A schematic illustration showing two non-coaxial 
passing dislocation loops on parallel slip planes (a) before 
cross-slip, (b) during cross-slip, (c) after cross-slip and 
annihilation, (d) cross-slipped loops acting as Frank-Read 
sources for dislocations on the primary planes. 

frictional forces two non-coaxial dislocation loops 
on parallel slip planes in an otherwise perfect 
crystal do not pass one another. Instead, segments 
of the loops that face each other form dipoles, 
while the rest of the loops expand continuously 
on their respective planes. Fig. 4a shows two such 
non-coaxial dislocation loops approaching one 
another with their screw segments facing each 
other. For a given applied stress, ~'ap = 150 x 10 s 
dyn cm -2 , the total energy of the equilibrium size 
of  the loops (saddle point equilibrium) is deter- 
mined and represented in Fig. 5 as a function of 
their separation, Y, and for various selected values 
of Z. When Y-+ 0% the two loops behave inde- 
pendently of each other and the total energy of 
the two loops approaches a constant corresponding 
to twice the energy of each loop. As Y decreases, 
the interaction between the two loops becomes 
significant and the energy reaches a minimum for 
Yvery nearly equal to zero so that correspondingly 
the unlike segments of loops, i.e. 2 and 8, form a 
dipole. For a further decrease of Y below zero, 
which r to the passing of dislocation 
2086 
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Figure 5 Total energy of two non-coaxial dislocation 
loops as a function of their separation and for various 
selected values of Z. 

loops over one another, Fig. 5 shows that the 
energy increases very fast indicating that such 
passing is energetically unfavourable. While the 
minimum in the total energy at Y ~ 0 exists for 
any value of Z, it becomes increasingly shallow 
with increasing Z; so that when Z-~ 0% the two 
loops can be considered as independent of one 
another and the total energy of such loops remains 
nearly constant for all values of Y. Also of interest 
to note in Fig. 5 is that the equilibrium value of 
Y (Y at the energy minimum) attains a maximum 
value when Z is of the order of R2, since for this 
configuration the repulsive forces between seg- 
ments 4 and 8 are a maximum [4]. 

It is found that the presence of frictional 
forces does not affect the behaviour of two non- 
coaxial dislocation loops in an otherwise perfect 
crystal. Identical ET-Y cruves (Fig. 5) were ob- 
tained when the applied stress is replaced by 
(~'ap -- rfp) = 150 x 108 dyn cm -2 . Since the fric- 
tional forces are assumed to be uniform on all 
segments of  the loop, the dislocation loops expand 
continuously on their glide planes with one end of 
each loop locked as a dipole. 

4.2. Mutual cross-slip 
It was shown earlier [14] that spontaneous cross- 
slip of non-coaxial dislocation loops occurs under 
their own internal stresses and such cross-slip leads 
to the annihilation of the unlike screw segments 
of the two loops and hence to the dynamic 
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Figure 6 Variation of Z* with dislocation loop size for various frictional stresses on the primary and cross-slip planes. 

recovery. For such cross-slip to occur, the inter- 
planar separation of the loops, Z, should be less 
than some critical value, Z*, so that the internal 
stresses are of sufficient magnitude to overcome 
the forces of the line tension of the two loops. 
The dashed line in Fig. 6 shows the result of the 
previous calculation [14] where there are no fric- 
tional forces on both the primary and cross-slip 
planes. In the presence of frictional forces, how- 
ever, the change in the total energy during mutual 
cross-slip is given by 

AET = 21E s + AE I -- 2%pb(A --A R) 

+ 2[ripb(A --AR)] + 2[rtcbXiR 11. 

(6) 
It is next assumed for simplicity that there are no 
applied stresses on the cross-slip plane and further 
that mutual cross-slip begins to occur after the 
loops reach equilibrium on their primary plane, 
i.e. with Y equal to zero (Figs. 4 and 5). When 
there are frictional forces present on the primary 
plane, the contribution from the 3rd and 4th terms 
on the right hand side of the above equation 
vanishes since the size of the loops on the primary 
plane remain unaltered during the entire cross-slip 
processes. In such cases, the change in the self 
energies of the two loops, AEs, and the interaction 
energy between the two loops, sXEI, reduce to 

AE s = 4E~c + 2E~ -a + 4E~c 2 + 4E~c a 

+ 2 6 4) (7a) 

and 

= 4 {6 + 4 & 7 "  + 

,.~ 3 - 9  2 - 6  2(Eic - EI ) 

-~- (~7~C 12 _ _ E l -  8 )  (7b) 

where again E~ and E~ -j correspond to self energy 
of segment i and interaction energy between seg- 
ments i and 1", respectively in the uncross-slipped 
configuration (Fig. 4a) and Ei~sc and E~) j are the 
respective energies in the cross-slipped configur- 
ation (Fig. 4b). While the exact expression for each 
one of the interaction energy terms is quite compli- 
cated, it is possible to write an approximate ex- 
pression for the total energy given by Equation 6 
in the following form after some lengthy algebriac 
manipulation and after neglecting terms such as 
EJ6 4, E~c 4 etc. which have only second order 
effects on the total energy of the loops. 

~ t b 2  II 7@o 1 ) JET ~ 4~r(1 -- e) 4X~ n + (3 

--RL(1z--V)I + 2rtcbXIR 1 (8) 

where the first term inside the brackets corresponds 
to the contribution of self energy of each edge 
segment (segments 2, 4 etc.) and the last term is 
the change in the interaction energy between seg. 
ments 3 and 12 as they glide towards each other 
on the cross-slip plane. Since the energy barrier for 
cross-slip disappears when Z = Z*, the above equa- 
tion can be solved for Z* by equating it to zero 
and hence Z* is given by 
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RI(1 - -v)  

In X1 + ( 3 _ v  + ~ -  

(9) 

where ro is core radius. Like in the previous 
analysis all of  the present calculations are done 
using the material constants corresponding to FeCo 
alloy [15]. In particular, /~ = 7 x 1011 dyn cm -2, 
b = 2.47 x 10 -8 cm and v = �89 have been used. 

Fig. 6 shows the variation of Z* with the loop 
radius for various selected values of frictional 
stresses. The datum points in this figure correspond 
to the computer calculations employing the exact 
expressions for the total energy (Equations 6 and 
7) and using the numerical techniques discussed 
earlier [14]. For Z close to Z*, these calculations 
showed that the instability of the two loops with 
respect to continuous cross-slip occurs when X~ 
was on the order of 5 x 10 -8 cm. This is related to 
the fact that the internal stresses increase very fast 
with X~ [14] especially when Z is close to Z*. 
Substituting this value for X1 in Equation 9, the 
values of Z* was determined as a function of R~ 
and these results are represented in Fig. 6 by the 
continuous curves. Since X1 occurs in the log term 
in Equation 9, it can be shown that Z* is quite 
insensitive to the exact value of X~ and is even 
more so when the loop size is large. 

The straight, solid line in Fig. 6 corresponds to 
the case where ~-f~ = 0 and zip 4 =0. Since the 
presence of frictional stress on the primary plane 
induces regidity for the loop on that plane, Z* for 
this case differs slightly from the case where both 
frictional stresses are absent (dashed line). In both 
cases, however, Z* increases to infinity as R --> oo 
implying that for infinite dislocations spontaneous 
cross-slip occurs for any value of Z and this is 
related to the absence of any opposing frictional 
forces on the cross-slip plane. On the other hand, 
when there are frictional forces present on the 
cross-slip plane, Z* approaches a limiting value as 
R~-->0% and this limiting value of Z* decreases 
very rapidly with an increase in frictional stress. 
From Equation 9, this limiting value of Z* is 
given by 

ub 
* (10)  Z m a x  - -  

27r ~-fe 

which could also be obtained independently by 
balancing the interaction forces between two 
parallel infinite dislocations against the frictional 

force on the cross-slip plane. Clearly, as rfc -+ 0, 
Z*ax -+ oo as discussed above. It should also be 
mentioned here that the above results (Fig. 6) can 
be used even when there is an appiied stress on the 
cross-slip plane except in this case rfc in Fig. 6 is 
now replaced by (rf~ --~'ae) which gives the fric- 
tional stress which is over and above the applied 
stress. 

4.3 Frank-Read sources 
After the cross-slip and mutual annihilation of the 
unlike screw segments of the loops, the configur- 
ation of the loops reduce to that shown in Fig. 4c. 
The next question to ask is how such a loop will 
expand further under the action of the applied 
stress on the primary plane. Again two possibilities 
exist. The loops on the primary planes could ex- 
pand continuously on their respective planes drag- 
ging the edge segments 2 and 6 (Fig. 4c)along 
with them by their line tension. In such a case the 
results would converge to those where there are no 
frictional forces present. On the other hand, edge 
segments 2 and 6 could remain stationary due to 
frictional forces which are greater than the tension 
exerted by the loops on the primary plane; and in 
which case continuous expansion of the loops on 
the primary plane could give rise to Frank-Read 
sources for dislocations on these planes, as shown 
in Fig. 4d. The magnitude of frictional stress 
necessary to hold the edge segments stable can be 
estimated by using the following approximate 
equation for the change in the total energy as the 
edge segments move by a distance b on their glide 
plane (Fig, 4d). 

.  {_2blnb+ / AET ~-4~-~ r-~ R( I  --v)J  + i r fbZ 'b [ ,  

(11) 
where the first term inside the brackets represents 
the reduction in the energy as each edge segment 
moves a distance b, since such a motion involves 
the elimination of two unlike screw segments each 
of length b (Fig. 4d) while the second term is the 
work done to overcome the attractive forces 
between the two edge segments. Finally, the last 
term in the above equation is the frictional energy. 
The magnitude of ~-g can be estimated by equaling 
the above expression to zero and is given by 

 12, r ;  - 2 ~  n R ( 1 - - ~ )  
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Equations 9 and 12 can both be solved simul- 
taneously for r~ and Z* for various loop sizes and 
the solutions of these equations represent the con- 
ditions(Z* and r~) necessary for two non-coaxial 
dislocation loops on parallel slip planes to mutually 
cross-slip under their own internal stresses and to 
further expand on their primary planes so as to 
give rise to Frank-Read sources on these planes. 
The values of Z* and r~' thus obtained are repre- 
sented in Fig. 7 as a function of the loop size. 
For reasonable values of frictional stresses that are 
normally encountered in real crystals (rf = 15 x 
108 dyn cm -2 for Fe-3% Si [8], Fig. 7 shows that 
for the dislocation loops to act as Frank-Read 
sources, the loop size (R 1 ) as well as the length of 
the jogs (Z*) should be very large. While the above 
two conditions present the size of the loops and 
the spacing between them, for the loops to act as 
Frank-Read sources, they should also be able to 
pass one another [8], and therefore the applied 
stress should be greater than the passing stress 
which in the infinite line approximation is of the 
order of /.lb/(27rZ). It should also be mentioned 
here that the results of Fig. 7 can be used even 
when there is an applied stress, rae, on the cross- 
slip plane. In such case r~c in Fig. 7 is replaced by 
(rfe -- rae) that is the magnitude of frictional stress 
Which is over and above the applied stress. 

5. Discussion 
The above analysis clearly shows that frictional 
forces can significantly effect the stability of dis- 
location loops, their passing as well as their cross- 
slip behaviour, and finally their ability to act as 
Frank-Read sources for dislocations in the primary 

as well as cross-slip planes. It is next important to 
analyse the significance of these results in relation 
to the behaviour of dislocation loops in real 
crystals. 

Experimental results on single crystalline Fe-3% 
Si alloys [8] as well as on many other metals and 
alloys that have relatively high stacking fault 
energy [16-24] show that most of the screw 
dislocations are heavily jogged and that the motion 
of these jogged dislocations generate edge dipoles 
or dipoles of near edge orientation. This jogging 
of screw dislocations and the subsequent formation 
of edge dipoles has been attributed, among many 
other things, to the cross-slip of screw dislocations 
[8]. Since only parts of the screw dislocation 
lines have cross-slipped rather than the complete 
lines, the major driving force for such a cross-slip 
should be the internal stresses rather than the 
applied stress. 

Tetelman [25] has proposed a different model 
to account for the formation of edge dipoles. In 
particular, he showed that passing dislocations on 
parallel slip planes could rearrange partly into edge 
dipole configuration to lower their energy. Such a 
rearrangement would also leave the rest of the 
segments of the dislocations as pure screw dis- 
locations, the subsequent cross-slip of which results 
into the jog formation. While this model is at- 
tractive since it is based on the experimental 
observations which show the presence of equal 
number of dislocations of both signs on parallel 
slip planes, his calculations seems to suggest that 
such a rearrangement to give rise to edge dipoles is 
most energetically favourable when the passing 
dislocations are predominantly of edge character. 
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On the other hand, the experimental results [8] 
show that dislocations are predominently of screw 
type. Also, while the above model still assumes the 
cross-slip of screw segments for the formation of 
jogs, the driving force for such cross-slip is left 
unaccounted for. 

In the following a model somewhat similar to 
that of Tetelman [25] is proposed taking into 
consideration the presence of predominent number 
of screw dislocations in the real crystal which are 
likely to form screw dipoles rather than edge 
dipoles. Fig. 8a, for example, schematically shows 
non-coaxial dislocation loops with large screw 
segments that one could encounter in a real crystal. 
When the dislocation loops meet one another, the 
screw segments of the loops could form dipoles. 
Mutual cross-slip of the dislocation loops could 
occur under their own internal stresses leaving 
edge jogs such as shown in Fig. 8b. The applied 
stress on the primary plane could bow out the 
remaining screw segments giving rise to edge 
dipoles, Fig. 8c. In contrast to Fig. 4d, the adjacent 
bowed out segments at each jog in Fig. 8c induce 
forces of opposite sign and hence the jogs may be 
stable with respect to lateral glide. Since these 
forces would depend on the lengths ll and 12 etc. 
(Fig. 8c), the resulting dipoles need not always be 
of pure edge orientation in agreement with the 
experimental results. 
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Figure 8 Schematic illustration showing the interaction of 
non-coaxial dislocation loops in a real crystal (a) before 
cross-slip, (b) mutual cross-slip and annihilation of unlike 
screw segments, (c) formation of edge dipoles due to sub- 
sequent motion of the remaining screw segments. 

If the applied stress is greater than the passing 
stress for these bowed out segments, then they 
could easily give rise to Frank-Read sources, since 
the jogs are made much more stable with respect 
to glide. Of all the bowed out segments the most 
likely candidate that could give rise to Frank-Read 
sources is the one which has the largest spacing 
between the jogs. For example, this could be the 
end AB of the loop (Fig. 8c) where B could 
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coincide with the crystal edge and in which case 
the loops give rise to single ended sources which 
are frequently observed earlier [8]. 

The analysis also shows that for the loops to 
act as Frank-Read sources by way of cross-slip, 
they should be sufficiently large. This implies that 
at-small strains that is when the average loop size 
is large, the cross-slip can only lead to regeneration 
of dislocations and hence to further work- 
hardening. With increasing in strain, however, the 
average loop size decreases thereby decreasing, on 
one hand, the number of sources for dislocations 
due to cross-slip and increasing, on the other, the 
number of dislocations being annihilated due to 
the same cross-slip. A balance in these two factors 
thus sets the stage for dynamic recovery, i.e. 
stage III deformation. 

6. Summary and conclusions 
It has been shown that frictional forces are im- 
portant in stabilizing dislocation loops in real 
crystal and further that these forces significantly 
affect the cross-slip and the subsequent behaviour 
of the dislocation loops. The critical conditions 
for the loops to act as Frank-Read sources in the 
presence of frictional forces by way of cross-slip 
have been determined. The results show that for 
the loops to act as Frank-Read sources in real 
crystals, the size of the loops should be sufficiently 
large and from this it is argued that cross-slip 
could lead to regeneration of dislocations at small 
strains. With an increasing strains, however, the 
number of such sources decreases while the 
number of Jislocations being annihilated due to 
cross-slip increases thereby leading to stage III 
deformation. The ability of the loops to cross-slip 
under their own internal stresses could account 
for many experimental observations that show the 
presence of heavily jogged screw dislocations and 
the generation of dipoles of near edge orientation. 
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